INDUSTRIAL INSTRUMENTATION LAB

KIC653

SESSION 2020-2021

DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION ENGINEERING

INSTITUTE OF ENGINEERING AND TECHNOLOGY LUCKNOW UTTAR PRDAESH

INDUSTRIAL INSTRUMENTATION LAB KIC653

- 1. Instrumentation Amplifier: Design for specific gain and verification of CMRR.
- 2. Analog to digital conversion using ADC kit
- 3. Digital to analog conversion using DAC for 4-bit/8bit systems.
- 4. Study of low noise and low frequency amplifier for biomedical application.
- 5. Design of temperature sensor circuit using RTD.
- 6. Design of temperature sensor circuit using thermocouple.
- 7. Design of Linearization and temperature measurement circuit using thermistor.
- 8. Study of pressure transmitter.
- 9. Study of Dead weight tester.
- 10. Study of level measurement using capacitance probe, differential pressure transmitter.
- 11. Study of flow measurement methods using orifice, electromagnetic and positive displacement flow meters.
- 12. Study of PID controller.

Experiment beyond the syllabus-

- 1. Characteristics of capacitive transducer (i) Variable area (ii) Variable distance.
- 2. Measurement of resistance using wheatstone's bridge
- 3. Measurement of resistance using kelvin's double bridge.
- 4. Measurement of capacitance using schering's bridge

Experiments performed via virtual instruments platform

Experiment-6

Objective – Temperature measurement using thermocouple.

Screen shots of this experiment is given below-

6/4/2021		Thermocouple	
A A		Thermocouple	Sensor Analysis
	Level-1 Static Characteristics	Control Panel	Save
	Thermocouple with Head	Thermocouple Type: K Nickel-10% Chromium(+)Versus Nickel-5%(-)(Aluminum Silicon) Reference Temp: 0 Useful Temperature Range: 95°C to 1260°C Get temperature ==> Enter Input value mV: Enter your Output Level 2 Submit Plot Next Set	NOTE 1. For simulation purpose g limited to 400 â., f 2.As the thermocouple 8 th convected to lower order to
	Thermocouple Reference Table	Selected Values: Thermocouple Type: K Reference Temp: 0	may differ from reference

Experimnet-10

Objective- Level measurement using capacitive sensor

A screen shot of this experiment is given below-

	Capacitance	Sensor Analysis Labora	tory	
	O CAWACTIANCE O Selected values : Height of Tank: 500 cm Outer radius(r2): 2.5cm Span Value: 445 Inner radius(r2): 0.1cm			
'rz+	Service: Coffee Beans Level(cm): 90 Output Capacitance: Enter your Output Throw Submit Anat] β _μ r		
 Meet attendance -(csv _ ^	Capacitania Graph Current Graph	•	1	
Type here to search			A D = 2 00 DE 3	6.321

Experiment-11

Objective-Flow measurement using orifice flow meter

Screen shots of this experiment is given below-

Flange Taps	Configuration Calculation for water service with flange taps : β :0.5 D :50mm	
		¢
Level-1 Control Panel: Q:	NOTE The simulation is based on equations as per ISO 5167 standard. Variation in the range limits not considered.	
User Input AP(mmWC):	Values	

Flow measurement woing orifice meter

$$d = 0.6196$$

$$\frac{d}{D} = 0.5$$

$$\beta = 0.5 = \frac{d}{P}$$

$$D = 50 \text{ mm}$$

$$d = 0.5D$$

$$d = \frac{D}{2} = 25 \text{ mm}$$

$$Q = \frac{cd A_2}{\sqrt{1-\beta^4}} \sqrt{\frac{2\Delta p}{\beta}}$$

From above equation we can calculate AP in Pascap.

ELECTRONICS AND INSTRUMENTATION ENGINEERING INSTITUTE OF ENGINEERING AND TECHNOLOGY LUCKNOW

Experiment-12

Objective: Design of PID controller

Theory-

r =set point (the desired value of a controlled variable is referred to as its set point)

y=process output (controlled variables)

e=error signal

u=controller output

Output of the controller can be expressed as:

$$u^{c}(k) = K_{p} \left[e(k) + \frac{\Delta t}{T_{i}} \sum_{i=0}^{k} e(i) + \frac{T_{d}}{\Delta t} \Delta e(k) \right]$$

Or

$$u^{c}(k) = K_{p}e(k) + K_{i}\sum_{i=0}^{k}e(i) + K_{d}\Delta e(k).$$

Where K_p is the proportional gain, $K_i = K_p \left(\frac{\Delta t}{T_i}\right)$ is the integral gain, $K_d = K_p \left(\frac{T_d}{\Delta t}\right)$ is the derivative gain, T_i is the integral time, T_d is the derivative time, and Δt is the sampling time period. Proper selection of the three tuning parameters $-K_p$, T_i , and T_d is a critical task to attain the desired close-loop performance.

MATLAB CODES

We have written the code for following process model.

•
$$G_p(s) = \frac{e^{-Ls}}{(1+s)^2}$$
, L=0.2 second

SN.	PROCESS MODEL	DELAY	ULTIMATE GAIN	ULTIMATE PERIOD
1-	$G_p(s) = \frac{e^{-Ls}}{\left(1+s\right)^2}$	L=0.2	10.5	2.0333

MATLAB CODE FOR PID CONTROLLER :

clc; clear all;

h=0.1; t = 0:h:16;

tf=16/h; y = zeros(1, length(t));u = zeros(1, length(t));e = zeros(1, length(t));x = zeros(1, length(t));y(1) = 0;x(1)=0;r=1 e(1)=r - y(1);ku=10.5; tu=2.033; kc=0.6*ku ti=tu/2 td=tu/8 $u(1)=kc^{*}(e(1) + (0.1/ti)^{*}sum(e));$ $F_xy = @(x) - 2^*x;$

for i = 1:2

%y and u taken as time input and x as output

 $k_{-1} = F_xy(x(i));$ $k_{-2} = F_xy(x(i)+0.5*h*k_{-1});$ $k_{-3} = F_xy((x(i)+0.5*h*k_{-2}));$ $k_{-4} = F_xy((x(i)+k_{-3}*h));$ $x(i+1) = x(i) + (1/6)*(k_{-1}+2*k_{-2}+2*k_{-3}+k_{-4})*h;$ y(i+1)=y(i)+h*x(i+1); e(i+1)=r-y(i+1); er=sum(e); ed=e(i+1)-e(i); (i+1)=le*(a(i+1)) + (0, 1/ii)*eum(a)) + (td/0, 1)*ed);

 $u(i+1)=kc^{*}(e(i+1)+(0.1/ti)*sum(e)+(td/0.1)*ed);$

end

 $F_xy = @(u,y,x) u-y-2*x;$

```
for i = 3: length(t)

k_1 = F_xy(u(i-2),y(i),x(i));

k_2 = F_xy(u(i-2)+0.5*h,y(i)+0.5*h,x(i)+0.5*h*k_1);

k_3 = F_xy((u(i-2)+0.5*h),(y(i)+0.5*h),(x(i)+0.5*h*k_2));

k_4 = F_xy((u(i-2)+h),(y(i)+h),(x(i)+k_3*h));

x(i+1) = x(i) + (1/6)*(k_1+2*k_2+2*k_3+k_4)*h;

y(i+1)=y(i)+h*x(i+1);

e(i+1)=r-y(i+1);

er=sum(e);

ed=e(i+1)-e(i);

u(i+1)=kc*(e(i+1)+(0.1/ti)*sum(e)+(td/0.1)*ed);
```

```
end
```

z=y(1:tf+1); plot(t,z,'--') xlabel('Time t ') ylabel('Response y') title(' CPID(- -) Response of second order system TF=exp(-0.2s)/s2+2s+1)') grid on

Screen shots:

ELECTRONICS AND INSTRUMENTATION ENGINEERING INSTITUTE OF ENGINEERING AND TECHNOLOGY LUCKNOW

ELECTRONICS AND INSTRUMENTATION ENGINEERING INSTITUTE OF ENGINEERING AND TECHNOLOGY LUCKNOW

14 | P a g e

